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Abstract

A hybrid method is applied to predict trailing edge noise based on a large eddy simulation (LES) of the
compressible flow problem and acoustic perturbation equations (APE) for the time-dependent simulation of
the acoustic field. The acoustic simulation in general considers the mean flow convection and refraction effects
such that the computational domain of the flow simulation has to comprise only the significant acoustic source
region. Using a modified rescaling method for the prediction of the unsteady turbulent inflow boundary layer,
the LES just resolves the flow field in the immediate vicinity of the trailing edge. The linearized APE
completely prevent the unbounded growth of hydrodynamic instabilities in critical mean flows.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Trailing edge noise is simulated using a two-step procedure. In the first step the unsteady
compressible flow field in the vicinity of the sharp trailing edge is simulated via a large eddy
simulation (LES) [1,2]. In the second step the acoustic field is computed using acoustic
perturbation equations (APE) forced by sources determined from the unsteady flow field.
The separation of the analysis of the flow field and the acoustic field offers the possibility to

take advantage of the disparity of the turbulent and acoustic length scales at low Mach numbers,
where the latter scale with M�1 is compared to the former. The mean flow convection and
refraction effects are part of the acoustic simulation such that the computational domain for the
flow simulation to prescribe the acoustic sources has to comprise only the significant acoustic
source region, i.e., it can be kept as small as possible. The integration domain of the acoustic
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computation contains the whole plate. Hence it incorporates diffraction at the leading edge and
allows the prediction of directivities.

2. Acoustic perturbation equations

A set of APE has been proposed in Ref. [3] to compute acoustic sound fields with a hybrid
method based on a LES of the compressible or the incompressible flow problem. It is shown in
Ref. [3] and proved computationally in Ref. [4] that the excitation of instabilities in globally
unstable mean flows is prevented due to the properties of the APE system. This important result
will be briefly discussed below.
The APE to simulate wave propagation are derived by a flow decomposition into acoustic and

non-acoustic quantities, based on a filtering of the non-linear and viscous terms of the Navier–
Stokes and continuity equations, respectively, in Fourier/Laplace space [1,3,4]. The APE system
for the perturbation variables ðp0; uaÞT gives [3]
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with %c2 ¼ g %p= %r the mean flow wave propagation speed. The left-hand side of this system describes
wave propagation in a non-uniform mean flow field %u: Computing the propagation of the acoustic
waves, including the convection effects in a time-averaged steady base flow field, allows restriction
of the unsteady flow simulation to the immediate vicinity of the source region under
consideration, while the mean flow field can be computed using efficient RANS or Euler methods.
Explicit formulations for the source terms qc and qm on the right-hand side of the APE system

(1) and (2) are obtained from source filtering [3,5]. As a formal result, it follows that the acoustic
velocity perturbations ua on the left-hand side of Eqs. (1) and (2) are the irrotational part of the
complete perturbation velocities u0 ¼ ua þ uv; whereas the sources qc; qm are functions of the
solenoidal part uv: The sources are
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with the substantial derivative %D=Dt ¼ @=@t þ %u � = and ½?	0 ¼ ½?	 � ½?	; where the overbar
denotes time averaging. Non-linear entropy fluctuations in Eqs. (3) and (4) are not considered.
Note that since ua on the left-hand side of Eq. (2) is irrotational, i.e., it can be expressed through
the gradient of a velocity potential, the curl of the whole left-hand side vanishes and so do all the
right-hand side terms, i.e., altogether the terms of Eq. (4) are irrotational. Furthermore, the
sources also contain linear terms.
The solenoidal perturbations follow directly from an incompressible flow simulation, which

might be sufficient for low Mach number problems to describe the remaining source terms
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involving the complete perturbation velocities properly, too. In order to obtain the solenoidal
velocity components from the perturbation velocities of a compressible flow simulation, Biot
Savart’s law has to be used, for instance in 2-D by solving one Poisson equation.
In this work, however, an alternative vortex sound source based on Lamb’s vector L ¼ x 
 u;

which is discussed in the next section, is used. This source vector can be computed easily from a
compressible LES simulation and avoids the effort to solve the Poisson equation.
Unlike the filtered source proposed in Ref. [3] the alternative source formulation based on

Lamb’s vector generates vortical disturbances in the APE system, i.e., ua in Eqs. (1) and (2) has to
be replaced by u0: Hydrodynamic instabilities are prevented despite using a non-filtered source
vector since stability is not obtained by suppressing the excitation of vorticity in the equations
through the irrotational source (4), but rather is a property of the governing APE system.
To show this stability property the homogeneous APE system, with dropped sources qc; qm; can

be recast into an equivalent system, where each equation is related to acoustic and vorticity
fluctuations. Entropy fluctuations are a priori excluded due to the chosen formulation of Eqs. (1)
and (2). The perturbation velocity u0 can be split into an irrotational term plus a remaining part

u0 ¼ =jþ ur: ð5Þ

Since it has not demanded ur to be solenoidal, the decomposition becomes uniquely defined after
imposing the additional condition that the unsteady pressure is expressed only in terms of the
unsteady potential j by

p0 ¼ � %r
%Dj
Dt

: ð6Þ

Substituting Eqs. (5) and (6) into Eqs. (1) and (2) with ua exchanged by u0 and zero q-terms yields
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The left-hand side of Eq. (7) is a convective term with wave operator L for the acoustic
fluctuations expressed through j: The behavior of the vortical perturbations in the APE system is
governed by Eq. (8). Since the APE system is derived to be well suited for the simulation of solely
acoustic modes it differs from the linearized Euler equations as it does not possess convection
equations for the vortical perturbations.
Hydrodynamic instabilities are excluded if the homogeneous APE system (1), (2) or the

equivalent system (7), (8) remain stable.
If the wave operator L; (7), can be proven to be stable, a possible unstable behavior of the

operator could only be caused by Eq. (8), due to the growth of vortical perturbations ur: Now, by
taking the curl of Eq. (8) it can be rewritten as

@xr

@t
¼ 0; ð9Þ

hence the vorticity remains constant. The wave operator on the left-hand side of Eq. (7) is that of
Pierce’s approximate wave equation [6], which also was derived by Goldstein in Ref. [7] and
recently used in Refs. [8,9]. The wave operator is equivalent to the linearized wave operator of
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M .ohring’s acoustic analogy [10,11], which shows
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where B is the total enthalpy and
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As discussed by Howe [12] for homentropic high Reynolds number flows his acoustic analogy [13]
agrees with Eq. (10). A great number of various acoustic analogies have been proposed in the past
in order to extend Lighthill’s acoustic analogy [14] to take into account refraction and convection
effects in the wave operator and to identify the real acoustic sources. As discussed by M .ohring
[10,11] and Bergliaffa et al. [15] the wave operator, L; of Pierce’s approximate wave equation and
that of M .ohring’s analogy, respectively, has some unique features. Bergliaffa et al. [15] derived it
from an action principle. As outlined by M .ohring the wave operator, L; can be shown to be
formally self-adjoint. From the self-adjointness, a reciprocity relation for the Green’s function
associated with L can be derived. Furthermore M .ohring [10,11] concludes, from the self-
adjointness, the existence of a variational principle such that a conservation law for the acoustic
energy can be deduced due to Noether’s theorem. From the energy conservation it can be
concluded that no instabilities occur by applying the wave operator. This is a remarkable result
since it is valid for arbitrary non-uniform mean flows and density gradients. Since the stability of
the wave operator L is the necessary condition for the stability of the APE system, the APE
system also is stable for arbitrary mean flows, even if non-acoustic perturbations are excited by
the source terms.
It may be noted that the linearized Euler equations are not stable for critical mean flows, hence

solution of the forced linear equations can diverge as was shown in Ref. [4].

3. Source terms of the APE system

Sources qc; qm of the APE system (1), (2) which can be computed easily from a compressible
flow simulation without solving a Poisson equation, are found by rewriting the governing flow
equations such that the left-hand side is given by the acoustic perturbation system while the right-
hand side is defined by the remaining terms. Although such sources will excite also vorticity
disturbances in the APE system, stability is not affected as discussed in the previous section. As
shown below the vortex sound source is based on the Lamb vector L ¼ x 
 u; i.e., the vorticity-
based source term of the acoustic analogies of Powell, Howe and M .ohring [10,11,13,16]. The
Lamb vector will vanish close to solid boundaries due to the no-slip condition, where the flow
simulation generally requires the highest resolution. Hence, the acoustic grid can be coarser than
the fluid mechanical grid to properly resolve the acoustic sources. Furthermore, since the APE
system does not describe convection of vortical disturbances due to its inherent vorticity equation
(9), no CFL restrictions related to non-acoustic modes limit the time step.
In the following the continuity and Navier–Stokes equations in primitive non-linear

disturbance formulation are used as governing equations. In order to obtain a system with the
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perturbation pressure as an independent variable, the second law of thermodynamics in the first
order formulation is used. The non-linear terms containing entropy fluctuations are dropped for
convenience. These neglected terms just occur as additional source terms on the right-hand side of
the final formulation. The governing equations can be written as

@r0

@t
þ = � ð %ru0 þ r0 %uþ r0u0 � r0u0Þ ¼ 0; ð11Þ

@u0
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� �
¼ f ð12Þ

with the momentum source
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%
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� �0
þT 0=%s � s0= %T; ð13Þ

where the perturbation density is connected to the perturbation pressure via

p0 � %c2r0 ¼
g %p
cp

s0: ð14Þ

In order to derive the particular form of Eq. (12) with the momentum source (13), the enthalpy
and entropy gradients using the second law of thermodynamics,

=p

r
¼ =h � T=s; ð15Þ

are substituted for the pressure gradient in the full non-linear momentum equation. Then the
equation for the perturbation quantities follow by subtracting the time-averaged momentum
equation. Since differentiation and time-averaging can be exchanged, only the gradient of the
perturbation enthalpy =h0 ¼ =h � =h remains in the momentum equation. Furthermore, the
terms containing entropy can be rewritten T=s � T=sE %T =s0 þ T 0=%s: Finally, the first order
formulation of the second law of thermodynamics,

h0 ¼
p0

%r
þ %Ts0; ð16Þ

is substituted for the perturbation enthalpy h0: Now, using the identity

ð%u � =Þu0 þ ðu0 � =Þ%u ¼ =ð%u � u0Þ þ x0 
 %uþ %x 
 u0

the left-hand side corresponds to the APE system (1)–(2), with ua exchanged by u0; while the right-
hand side sources show [3]
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þ
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t

r

� �0
: ð18Þ

In Ref. [17] an acoustic analogy is defined to be ‘‘any noise theory in which the equations of
motion for a compressible fluid are rearranged in a way that separates linear propagation effects’’.
Since the linear APE system plus the above sources follow from the governing flow equations,
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where the major linear source terms are expressions in vorticity and entropy in the sense of the
above definition, it constitutes an acoustic analogy where one can think of sound being generated
by vorticity and entropy inhomogeneities. The source term qc contains a heat source %r=cp %Ds0=Dt:
If only vortex sound is considered, the entropy variations can be dropped. The major vortex
source term is the Lamb vector, i.e., qm ¼ �½L	0 with L ¼ x 
 u: For the computations presented
in this paper the non-linear and viscous source terms are not considered.
In order to validate the capability of the proposed source term based on Lamb’s vector in

conjunction with the APE system to simulate properly acoustic fields the spinning vortex pair is
computed. Two-point vortices with circulation G and distance 2r0 are revolving with relative
Mach number Mr ¼ G=4pr0cN; Fig. 1. The point-like vortices are approximated using a vortex
core model based on a Gaussian vorticity distribution with a standard deviation sEr0 such that
the source becomes

qmðr; tÞ ¼ �
G2erðtÞ
8p2s2r0

X2
i¼1

ð�1Þi exp �
jrþ ð�1Þir0ðtÞj

2

2s2

� �
; sEr0

with r ¼ ðx; yÞT; r0 ¼ r0er; and er ¼ ðcos y; sin yÞT; y ¼ ot: The computational domain has an
extension of �100px=r0p100 in the x and y direction. The interior grid consists of 141
 141
points with a surrounding sponge layer thickness of 11 points. In order to resolve the vortex
source properly the orthogonal grid is clustered close to the origin. The results are compared to a
solution based on the matched asymptotic expansion (MAE) given by M .uller and Obermeier [18].
Spurious waves can be suppressed effectively by spatially filtering. Fig. 2 shows perfect agreement
of the pressure contours of the MAE and the APE solutions for the circulation G=ðcNr0Þ ¼ 1:0:
Fig. 3 shows a comparison of the pressure distribution along the diagonal x ¼ y of the MAE
solution with the solutions of the APE system for three different vortex circulations and spinning
frequencies, i.e., G=ðcNr0Þ ¼ 0:6; 1:0; 1:6: The acoustic fields of the APE formulations show very
good agreement with the analytical solution for all frequencies.
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Fig. 1. Sketch of the spinning vortex pair. The distance between both vortices is 2r0:
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4. Numerical methods

For the spatial discretization of the APE the fourth order dispersion relation preserving (DRP)
scheme of Tam and Webb [19] is applied. The DRP scheme is also applied to compute the metric
terms of a curvilinear grid such that a consistent discrete system is achieved. The temporal
integration is carried out with the fourth order alternating two-step low-dissipation and low-
dispersion Runge–Kutta scheme (LDDRK 5-6) proposed by Hu [20].
To suppress spurious high-frequency waves artificial selective damping (ASD) according to

Tam and Dong [21] is used. A constant background value of the mesh Reynolds number with a
typical value of 1=ReD ¼ 0:05 with a slight increase close to boundaries is used. Besides artificial
selective damping also explicit commutative filters according to Vasilyev et al. [22] are used. At
boundaries one-sided stencils as derived by Vasilyev et al. are imposed. A sponge layer boundary
conditions is used at far field boundaries. The formulation of the solid wall boundary conditions is
based on the ghost point concept proposed by Tam and Dong [23] in conjunction with body fitted
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Fig. 2. Comparison of the acoustic pressure contours for a matched asymptotic expansion (MAE) solution (a) and the

solution of the APE-4 system with vortex source term (b). G=ðcNr0Þ ¼ 1:0; Mr ¼ 0:0796:
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grids. The value of the pressure of the ghost point is determined such that the wall normal
pressure derivative satisfies the boundary condition, e.g., @p0=@n ¼ 0: It is shown in [23] that the
generation of numerical artifacts and high-frequency spurious waves can be reduced significantly
using this approach.

5. Simulation of trailing edge noise

5.1. Large-eddy simulation

A large-eddy simulation is performed to simulate the turbulent compressible flow over the
trailing edge of a flat plate. The discretization of the convective fluxes of the Navier–Stokes

ARTICLE IN PRESS

Fig. 3. Pressure distribution p0 along x ¼ y for the MAE (– – – –) and APE (——) solution. (a) G=ðcNr0Þ ¼ 0:6;
Mr ¼ 0:0477; (b) G=ðcNr0Þ ¼ 1:0; Mr ¼ 0:0796; (c) G=ðcNr0Þ ¼ 1:6; Mr ¼ 0:1273:
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equations is based on a second order accurate AUSM formulation with a central approxi-
mation for the pressure derivative. The viscous stresses are discretized using central
differences of second order accuracy. Furthermore, an explicit 5-step Runge–Kutta time
stepping scheme of second order accuracy is used for the temporal integration. The coefficients
are chosen to maximize the stability of a central scheme. The scheme is described in more
detail in Meinke et al. [24]. The flow being simulated corresponds to the experiments
conducted by the Universities of Dresden and Stuttgart [25] at a Reynolds number
based on the length l ¼ 0:2 m of the plate Re ¼ 4:93
 105 and a freestream Mach number
M ¼ 0:15: The flat plate possesses a thickness d ¼ 0:35 mm: To reduce the computational effort
while capturing the essential physics, numerical simulations are conducted in a domain that
contains only 25% of the total length of the plate. Fig. 4 shows a plane of the LES grid. 17 points
in the spanwise direction have been used to yield a grid with 2:22
 106 points. The spanwise
extension is 0:64d0:
The boundary layer thickness at the inlet is d0=l ¼ 1=52:228: The instantaneous inflow data is

generated via an auxiliary LES of an adiabatic flat plate boundary layer using a compressible
rescaling method. More details of the LES are given in El-Askary et al. [2].

5.2. Sound pressure level (SPL) calculation

Considering a general cylindrical problem, whose 3-D geometry is generated by translation of a
2-D boundary curve in the spanwise direction, i.e., an unswept wing of constant chord length,
which is defined by the translation of a 2-D airfoil section, one basic problem arises in any hybrid
acoustic method. In the LES the spanwise extension of the computational domain is only in the
order of the turbulent length scale and periodic boundary conditions are applied to reduce the
computational cost to an acceptable level. Since in low Mach number flows the turbulent length
scale is significantly smaller than the acoustical length scale, applying periodic boundary
conditions for the compressible problem means to simulate an unphysically correlated acoustic
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Fig. 4. LES grid, every second grid point is shown. The dimensions are related to the inflow boundary layer d0; which
scales with 1=52:228 related to the plate length l:
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source in the spanwise direction. This was observed by Manoha et al. [26] by analyzing the
acoustic signal contained in the compressible LES of a trailing edge flow. The spanwise
unphysically correlated source causes an overprediction of the SPL. Kato et al. [27] state the SPL
to be about 14 dB too high. This issue was also discussed by Wang et al. [28]. To avoid such an
unphysical correlation it is required to use a spanwise extension in an LES that also resolves the
acoustics properly, which is of the order of the acoustic length scale. This means an increase of the
grid points of one order of magnitude. However, the flow physics of the hydrodynamic near field
is obviously predicted properly via an LES with the usual spanwise extension. Hence, acoustic
source terms for a hybrid approach can be predicted properly if the effect of spurious correlation
is considered and corrected in the acoustic simulation.
When perturbation equations for the acoustic simulation in 3-D, where the extension in the

spanwise z direction equals that of the LES, are applied, in general two types of boundary
conditions for the boundaries in the z direction can be used

1. absorbing boundary conditions,
2. periodic boundary conditions.

An acoustic computation with absorbing boundaries in the spanwise direction is equivalent to a
3-D acoustic prediction method, which only considers the sound radiated by the LES domain of
length LS: Hence, SPL corrections have to be applied to take into account a finite span LaLS:
Furthermore a coherence length LC that was introduced in Ref. [27] appears as a characteristic
length scale of the problem. It is defined by the assumption, that the acoustic field of the source in
the spanwise direction is determined by the accumulated signal of slices with width LC and the
source is fully correlated inside each slice but fully uncorrelated outside. For each slice the signal
in a receiving point follows by integrating the far field response of all acoustic sources over LC

taking into account phase shifts, while the complete intensity in the receiving point is found by
adding up the far field intensities of all slices. If the spanwise length of the cylindrical geometry is
small compared to the distance to an observer that is placed in the plane midway between the
cylinder ends, where the plane normal is defined by the cylinder axis, the summation of all
intensities yields an increase of the intensity in the observer point proportional to the ratio L=LC

compared to one slice of width LC alone. In general the spanwise extension of the unsteady flow
solution LS has to be chosen such that LSXLC and the SPL corrections follows according to Kato
et al. [27]

SPL ¼ SPLS þ 10 logðL=LSÞ: ð19Þ

However, a computational acoustic domain of small spanwise width yields acoustic waves that
leave the domain at very large angles relative to the direction normal to the wall boundary. Most
non-reflecting boundary conditions used for computational aeroacoustics will not work properly
under these conditions. Therefore, the second case of periodic boundary conditions in the
spanwise direction is considered here. Since in low Mach number flows the acoustic length scale is
considerably larger than LS; the source over one slice is compact, hence it can be averaged and
smeared over LS: That is, the 3-D problem with periodic boundary conditions can be described in
this compact case by a 2-D acoustic simulation using the 3-D source averaged over LS: This
approach has been applied in this work. The simulated 2-D results have to be corrected to take
into account 3-D radiation and a finite span L: According to Oberai et al. [29] for low Mach
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number flows the 3-D corrected spectral pressure *p follows from the 2-D spectral pressure #p via

*pðr; yÞE #pðr; yÞ
1þ i

2

ffiffiffiffiffi
k

pr

r
; ð20Þ

where k is the wave number, r is the observer distance perpendicular to the cylinder axis, and y is
the polar angle in the 2-D plane. The 2-D problem for #p is solved using the 3-D acoustic source
averaged in the spanwise direction over LS; hence *pðr; yÞ is the sound radiated by one slice of width
LS: Furthermore, for a finite spanwise extension of the cylindrical geometry L the additional
correction (19) has to be used where SPLS denotes the sound pressure levels that follow from j *pj:
Note that all the corrections to the 2-D solution do affect the final spectral SPL distribution,
however, have no impact on the y-dependent directivity.

5.3. Acoustic simulation

The acoustic grid is shown in Fig. 5. The flat plate extends from �1 to 0 and the finite thickness
is resolved. The grid is clustered in the wake of the plate to resolve properly the source term. To
compute the acoustic source terms in Eq. (18) 503 time levels of the LES have been sampled with a
time increment of Dt ¼ 4
 10�3 (reference time tref ¼ l=cN; plate length l). With 20 points per
period, this is sufficient to resolve frequencies up to 21 kHz; while the lowest resolution is
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Fig. 5. Acoustic grid scaled with the plate length l; every fourth grid point is shown.
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according to the number of time levels in the order of 800 Hz; i.e., the frequency band resolved by
the measurements [25] is covered. Due to the fine grid resolution of the LES close to the plate
surface, the temporal resolution of the LES is much finer, such that only every 160th time step is
used.
Fig. 6 shows snapshots of the source terms in Eq. (18). The quantitative comparison

evidences that the main contribution to the source term comes from the y component. The
visible vortical structures mainly convect in the downstream direction, where the
temporal resolution of the acoustic simulation is sufficient to resolve the source term
properly. Note that the source based on Lamb’s vector is small close to the wall due to the no-
slip boundary condition, where the LES has its finest resolution. The upper half-planes in Fig. 6
show the acoustic grid in the vicinity of the plate. The acoustic grid possesses 2
 105 points,
17585 of which are located in the LES domain. The source term is computed on the LES grid and
then bilinearly interpolated onto the acoustic grid. Entropy fluctuations are neglected in the
source computation.
To suppress spurious acoustic signals at in- and outflow boundaries of the LES

domain damping zones are used. Since the LES domain is enclosed by a C-shaped
sponge layer (Fig. 4) a natural damping zone is obtained at the outflow boundary where the
source will decay to zero. At the inflow boundary the computed source is weighted over a width
d ¼ 0:15:
Figs. 7 and 8 show a snapshot of the pressure field generated at the trailing edge for

T ¼ 3: Depicted are simulations for the acoustic grid of Fig. 5 and for an acoustic grid
with the grid refinement factor of 1.5 for each coordinate direction. Acoustic waves
that are generated at the trailing edge are apparent. No spurious sound sources, e.g., from the
LES inflow boundary located at x ¼ �0:25; are visible. The pressure contours of the coarse and
the fine grid simulation evidence a grid-independent solution. Fig. 9(a) shows the directivity
F1=2ðy; r; klÞ; with F being the non-dimensional power spectral density (PSD) of p02; for four
different frequencies and a circle centered at the trailing edge with radius r ¼ 1:5: The definition of
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 u	0 ¼ ðL0
x;L

0
yÞ
T; L0

x (a), L0
y (b), and CAA grid.
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the PSD used here is based on the non-dimensionalized two-sided power spectral density per unit
time [30]

p02ðy; rÞ
c2
N
r4
N

¼
Z

N

�N

Fðy; r; klÞ dkl: ð21Þ
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Fig. 7. Pressure contours of the trailing edge problem M ¼ 0:15; Re ¼ 7
 105 at time level T ¼ 3:0; APE-4 solution on
an acoustic grid with 2
 105 points.

Fig. 8. Pressure contours of the trailing edge problem M ¼ 0:15; Re ¼ 7
 105 at time level T ¼ 3:0; APE-4 solution on
an acoustic grid with a 1:52 finer grid resolution compared to Fig. 7.
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The directivities agree qualitatively very well with the shapes of the approximate harmonic non-
compact edge noise Green’s function according to Howe [31,32]. In the compact limit the product
of wave number and chord length tends to zero, i.e., kl-0: In this limit, the directivity recovers a
dipole eight characteristic psinðyÞ: For the opposite case with kl-N the chord length to
wavelength ratio tends to infinity, i.e., the cardioid directivity of the semi-infinite flat plate
psinðy=2Þ follows. With increasing wave numbers a multi-lobe pattern appears, whose envelopes
converge against the cardioid shape.
In the acoustic analogy approach the acoustic far field follows from a convolution integral of

the Green’s function with the acoustic source, which is for the trailing edge problem compact and
confined to the vicinity of the trailing edge. Hence, the convolution integral reduces in the
frequency domain to the product of the harmonic non-compact edge noise Green’s function times
the frequency-dependent effective acoustic trailing edge source. In other words the Green’s
function yields the source directivity which is scaled by the spectral acoustic source strength. The

ARTICLE IN PRESS

Fig. 9. Directivity F1=2ðy; r; klÞ with F #¼ non-dimensional power spectral density (PSD) of p02ðy; rÞ=ðr
N

c2
N
Þ2; i.e.,R

N

�N
Fðy; r; klÞ dkl ¼ p02ðy; rÞ=ðr

N
c2
N
Þ2; APE-4 simulation for r ¼ 1:5; origin at the trailing edge, for various non-

dimensional wave numbers kl ¼ 3:072 (– – –), kl ¼ 9:215 ð?Þ; kl ¼ 15:358 ð– � –Þ; kl ¼ 21:502 (—–) (a); and sound

pressure levels (SPL) for a receiving point in r ¼ 1:5 above the trailing edge for directions y ¼ 90� (——), y ¼ 135�

ð– � –Þ; and y ¼ 45� ð?Þ (b).

R. Ewert, W. Schr .oder / Journal of Sound and Vibration 270 (2004) 509–524522



directivities of the acoustic simulation based on the hybrid approach that are depicted in Fig. 9
shows evidence of this dependence since the directivities agree qualitatively with the harmonic
edge noise Green’s functions of Howe but are scaled such that different magnitudes of the
effective spectral pressure follow for the resolved frequencies. In particular for non-dimensional
wave numbers larger than kl ¼ 9:215 the magnitudes successively decay.
Fig. 9(b) depicts the PSD at three receiving points with a distance rE1:5 to the trailing edge.

The three receiving points are related to the polar angles y ¼ 45�; 90�; and 135�; respectively,
where all angles are defined similar to Fig. 1. The SPL and dimensional frequencies are computed
based on the chord length and the ambient thermodynamic properties of the experimental setup.
The dimensional pressure levels are related to a reference pressure of pref ¼ 2
 10�5 Pa; such that
the SPL follows from

SPL ðdBÞ ¼ 20 log
peff

pref

� �
; pref ¼ 2
 10�5 Pa;

with peff :¼ r
N

c2
N
F1=2: The spectral distributions evidence the decline of the SPL over the

frequency band.

6. Conclusion

A new hybrid prediction method based on an LES has been developed for the acoustic source
region and acoustic perturbation equations for the time-dependent acoustic simulation. The
results for the trailing edge problem are particularly encouraging. A vortex source based on
Lamb’s vector is proposed, which can be computed easily from a compressible LES.
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